Đưa lý thuyết tương đối hẹp vào thực tiễn

Thuyết tương đối thường bao gồm hai lý thuyết có liên quan với nhau của Albert Einstein: thuyết tương đối hẹp công bố năm 1905 và thuyết tương đối rộng xuất bản năm 1915. Thuyết tương đối hẹp áp dụng cho tất cả các hiện tượng vật lý khi không có lực hấp dẫn. Thuyết tương đối rộng giải thích luật hấp dẫn và mối quan hệ của nó với các lực khác của tự nhiên.

Thuyết tương đối được Albert Einstein phát triển vào đầu thế kỷ 20 do vật lý cổ điển không thể giải thích một số quan sát. Nó có hai thành phần, thuyết tương đối hẹp và thuyết tương đối rộng.

Thuyết tương đối hẹp dựa trên các khái niệm cơ bản về tốc độ ánh sáng không đổi và các sự kiện vật lý nên xuất hiện giống nhau đối với tất cả các quan sát viên và áp dụng cho tất cả các hiện tượng vật lý mà không có lực hấp dẫn đáng kể. Thuyết tương đối rộng là ý tưởng cho rằng thời gian và không gian là hai khía cạnh của không thời gian, và những gì chúng ta coi là lực hấp dẫn là sự cong vênh của không thời gian.

Các nhà khoa học nghiên cứu vũ trụ có một triết lý yêu thích được gọi là “Nguyên lý trung bình”, về bản chất, nó gợi ý rằng không có gì thực sự đặc biệt về Trái đất, Mặt trời, hoặc[{” attribute=””>Milky Way galaxy compared to the rest of the universe.

Now, new research from the University of Colorado at Boulder (CU Boulder) adds yet another piece of evidence to the case for mediocrity: Galaxies are, on average, at rest with respect to the early universe. Jeremy Darling, a CU Boulder astrophysics professor, published this new cosmological finding on May 26, 2022, in the journal Astrophysical Journal Letters.

Thousands of Galaxies Hubble Space Telescope

This image made from a composite of September 2003 – January 2004 photos captured by the NASA/ESA Hubble Space Telescope shows nearly 10,000 galaxies in the deepest visible-light image of the cosmos, cutting across billions of light-years. Credit: Image courtesy of NASA, ESA, S. Beckwith (STScI), HUDF Team

“What this research is telling us is that we have a funny motion, but that funny motion is consistent with everything we know about the universe—there’s nothing special going on here,” said Darling. “We’re not special as a galaxy or as observers.”

Roughly 35 years ago, researchers discovered the cosmic microwave background, which is electromagnetic radiation left over from the universe’s formation during the Big Bang. The cosmic microwave background appears warmer in the direction of our motion and cooler away from the direction of our motion.

From this glow of the early universe, scientists can infer that the Sun—and the Earth orbiting around it—is moving in a certain direction, at a certain speed. Researchers find that our inferred velocity is a fraction of a percent of the speed of light—small, but not zero.

Jeremy Darling

Astrophysics professor Jeremy Darling studies galaxy evolution, massive black holes, star formation, and cosmology. Credit: University of Colorado at Boulder

Scientists can independently test this inference by counting the galaxies that are visible from Earth or adding up their brightness. They can do this thanks largely to Albert Einstein’s 1905 theory of special relativity, which explains how speed affects time and space. In this application, a person on Earth looking out into the universe in one direction—the same direction that the Sun and the Earth are moving—should see galaxies that are brighter, bluer, and more concentrated. Similarly, by looking in the other direction, the person should see galaxies that are darker, redder, and spaced farther apart.

But when investigators have tried to count galaxies in recent years—a process that’s difficult to do accurately—they’ve come up with numbers that suggest the Sun is moving much faster than previously thought, which is at odds with standard cosmology.

“It’s hard to count galaxies over the whole sky—you’re usually stuck with a hemisphere or less,” said Darling. “And, on top of that, our own galaxy gets in the way. It has dust that will cause you to find fewer galaxies and will make them look dimmer as you get closer to our galaxy.”

Darling was intrigued and perplexed by this cosmological puzzle, so he decided to investigate for himself. He also knew there were two recently released surveys that could help improve the accuracy of a galaxy count—and shed light on the velocity mystery: one called the Very Large Array Sky Survey (VLASS) in New Mexico, and the other called the Rapid Australian Square Kilometer Array Pathfinder Continuum Survey (RACS) in Australia.

“I love the idea that this basic principle that Einstein told us about a long time ago is something you can see. It’s a really esoteric thing that seems super weird, but if you go out and count galaxies, you could see this neat effect. It’s not quite as esoteric or weird as you might think.” — Jeremy Darling

Together, these surveys allowed Darling to study the entire sky by patching together views from the northern and southern hemispheres. Importantly, the new surveys also used radio waves, which made it easier to “see” through the dust of the Milky Way, thus improving the view of the universe.

When Darling analyzed the surveys, he found that the number of galaxies and their brightness was in perfect agreement with the velocity researchers had previously inferred from the cosmic microwave background.

“We find a bright direction and a dim direction—we find a direction where there are more galaxies and a direction where there are fewer galaxies,” he said. “The big difference is that it lines up with the early universe from the cosmic microwave background and it has the right speed. Our cosmology is just fine.”

Because Darling’s findings differ from past results, his paper will likely prompt various follow-up studies to confirm or dispute his results.

But in addition to pushing the field of cosmology forward, the findings are a good real-world example of Einstein’s special relativity theory—and they demonstrate how researchers are still putting the theory into practice, more than 100 years after the famed physicist first proposed it.

“I love the idea that this basic principle that Einstein told us about a long time ago is something you can see,” Darling said. “It’s a really esoteric thing that seems super weird, but if you go out and count galaxies, you could see this neat effect. It’s not quite as esoteric or weird as you might think.”

Reference: “The Universe is Brighter in the Direction of Our Motion: Galaxy Counts and Fluxes are Consistent with the CMB Dipole” by Jeremy Darling, 26 May 2022, Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac6f08

READ  Sự tò mò đã lang thang trên cùng một miệng núi lửa khổng lồ trong 9 năm. Nó có thể không phải là những gì chúng tôi nghĩ

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *